Algal genes in aplastidic eukaryotes are not necessarily derived from historical plastids
نویسندگان
چکیده
In photosynthetic eukaryotes, many genes were transferred from plastids or algal endosymbionts to nuclear genomes of host cells. These transferred genes are often considered genetic footprints of plastids. However, genes of algal origin have also been detected in some plastid-lacking eukaryotes, and these genes are often cited as evidence of historical plastids. In this paper, we discuss two recent publications about algal genes in plastid-lacking eukaryotes. Both studies highlight the point that algal genes are not exclusively derived from historical plastids. Instead, the findings show that gene acquisition through feeding activities is a plausible explanation.
منابع مشابه
Algal genes in the closest relatives of animals.
The spread of photosynthesis is one of the most important but controversial topics in eukaryotic evolution. Because of massive gene transfer from plastids to the nucleus and because of the possibility that plastids have been lost in evolution, algal genes in aplastidic organisms often are interpreted as footprints of photosynthetic ancestors. These putative plastid losses, in turn, have been ci...
متن کاملRe-analyses of “Algal” Genes Suggest a Complex Evolutionary History of Oomycetes
The spread of photosynthesis is one of the most important but constantly debated topics in eukaryotic evolution. Various hypotheses have been proposed to explain the plastid distribution in extant eukaryotes. Notably, the chromalveolate hypothesis suggested that multiple eukaryotic lineages were derived from a photosynthetic ancestor that had a red algal endosymbiont. As such, genes of plastid/...
متن کاملRole of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids.
Plastids are the organelles derived from a cyanobacterium through endosymbiosis. Unlike mitochondria, plastids are not found in all eukaryotes, but their evolution has an added layer of complexity since plastids have moved between eukaryotic lineages by secondary and tertiary endosymbiotic events. This complex history, together with the genetic integration between plastids and their host, has l...
متن کاملAlgal Genomics: Exploring the Imprint of Endosymbiosis
The nuclear genomes of photosynthetic eukaryotes are littered with genes derived from the cyanobacterial progenitor of modern-day plastids. A genomic analysis of Cyanophora paradoxa - a deeply diverged unicellular alga - suggests that the abundance and functional diversity of nucleus-encoded genes of cyanobacterial origin differs in plants and algae.
متن کاملPhylogenomic Analysis of “Red” Genes from Two Divergent Species of the “Green” Secondary Phototrophs, the Chlorarachniophytes, Suggests Multiple Horizontal Gene Transfers from the Red Lineage before the Divergence of Extant Chlorarachniophytes
The plastids of chlorarachniophytes were derived from an ancestral green alga via secondary endosymbiosis. Thus, genes from the "green" lineage via secondary endosymbiotic gene transfer (EGT) are expected in the nuclear genomes of the Chlorarachniophyta. However, several recent studies have revealed the presence of "red" genes in their nuclear genomes. To elucidate the origin of such "red" gene...
متن کامل